How to Recognize and Treat Heavy Metal Poisoning from Occupational and Non-occupational Exposures

A focus on Lead, Mercury and Arsenic

Danyal Ibrahim, MD, MPH, FACMT
Chief of Toxicology
Department of Emergency Medicine
Saint Francis Hospital and Medical Center

Presentation Outline

- Heavy Metals
- Sources of Exposure
- Clinical Manifestation of Toxicity
- Evaluation
- Management
Heavy Metals: Commonalities

- **Natural components of the earth’s crust**
 - Lead
 - Mercury
 - Arsenic

- **Sources of Exposure**
 - Natural sources
 - Industrial processes
 - Commercial products
 - Folk remedies
 - Contaminated food and herbals

- **All heavy metals are toxic in sufficient quantities**

- **Route of Exposure:**
 - Food
 - Water
 - Air

- **Toxicity**
 - Complexes with critical proteins and enzyme systems containing sulfur, oxygen and nitrogen
 - Cellular dysfunction and death
 - Vulnerable organs include CNS, GI, CVS, Hematopoietic, Renal and PNS

- **Toxicity Manifestations Vary**
 - Heavy metal involved
 - Exposure level
 - Chemical and valance states
 - Acute vs. Chronic
 - Age of the individual

- **Management Principles**
 - Exposure mitigation
 - Supportive Care
 - Enhanced elimination (chelation)
Lead: Characteristics

Properties
- Grey-silver heavy metal ~ 0.002% earth's crust
- No physiologic role
- Stored mainly in bone (95%) with half-life ~ 30 years

History
- Human use in paint 40,000 BC
- Industrial Revolution
 - Leaded gasoline (stopped 1990)
 - Leaded paint (banned 1972)
- Reports of toxicity
 - Ancient Egyptians
 - Leaders of Rome
 - Personality changes
 - Still births
 - Sterility

Sources of Exposure:
- Occupational (inhalation)
 - Battery plant workers
 - Metal Welders
 - Painters
 - Construction workers
 - Crystal glass makers
 - Firing-range operator
 - Shipbuilders
 - Lead miners
- Leaded-paint
 - Houses built before 1978
 - Lead dust
- Commercial Products
 - Retained lead bullets
 - Curtain weights
 - Lead-glazed ceramics
- Folk Remedies
 - Azarcon and greta

Lead: Chronic Toxicity in Adults

- Most commonly from occupational respiratory exposure
- Toxicity Manifestations
 - Hypertension
 - Anemia
 - Abdominal colic
 - Muscle and joint pain
 - Decreased fertility
 - Renal failure
 - Peripheral motor neuropathy (wrist drop)
 - Subtle neurological symptoms: lethargy and emotional liability
 - Encephalopathy (blood lead level > 100 mcg/dl)
- Important Considerations
 - Stored mainly in bone (95%) with half-life ~ 30 years
 - Blood lead level may increase with increased bone metabolism
 - Lead objects retained within the body releases lead
 - Acidic environment like synovial and stomach
 - Mechanical stress
Lead: Diagnosis

- Exposure History
- Unexplained Clinical Presentation
 - Hypertension, abdominal colic, wrist drop, renal failure, encephalopathy
- Blood lead level is the gold standard
- Other laboratory tests
 - CBC: hypochromic microcytic anemia and basophilic stippling
 - Basic metabolic panel
 - Urinalysis
 - X-ray fluorescence
- Occupational Monitoring
 - OSHA: periodic screening for exposure to air lead of 30 mcg/m³
 - Blood lead level check and follow up

Lead: Management

- Exposure mitigation
- Workplace
 - PPE
 - Safe work practices
 - Improving industrial engineering
- Chelation
 - Symptomatic
 - Blood lead level greater than 70 mcg/dl
- Choice of Chelating Agent
 - Oral Succimer (DMSA)
 - Mild symptoms
 - Blood lead level 70 - 100 mcg/dl
 - Intravenous CaNa₂EDTA plus oral Succimer (or IM Dimercaprol)
 - Encephalopathy
 - Blood lead level > 100 mcg/dl
Mercury: Characteristics

- **Properties**
 - Liquid silvery appearance
 - No physiologic role
 - Three distinct forms with distinct toxicities
 - Elemental
 - Inorganic
 - Organic

- **History**
 - Human use
 - Décor Egypt 1500 BC
 - Cosmetic Greece and Rome
 - Medicinal East Asia
 - Syphilitic Western Europe 1400 “two minutes with Venus, two years with Mercury”
 - Industrial Revolution
 - Workplace exposure
 - Hat makers in felt production (carroting)
 - Reports of toxicity
 - Hatters
 - “mad as a hatter”
Mercury: Elemental Mercury

- Heavy liquid that volatilize to an odorless gas at room temperature
- Sources of Exposure
 - Industrial processes and commercial applications
 - Thermometers, thermostats, barometers
 - Electronics
 - Dental amalgams
 - Home folk remedies
- Route of Exposure
 - Inhalation
 - Ingestion
- Chronic Toxicity
 - Manifestations (inhalation)
 - GI upset
 - Acrodynia (pink disease)
 - Erethism
 - Hands tremor
 - Renal failure

Mercury: Acrodynia (pink disease)

© Danyal Ibrahim, MD, MPH
Mercury: Elemental Mercury

- **Diagnosis**
 - Exposure history
 - Clinical syndrome
 - 24-urine for mercury is gold standard (<50 mcg)
 - Blood mercury level has limited value (<10 mcg/L)

- **Management**
 - Exposure mitigation
 - Chelation
 - Symptomatic
 - Elevated body burden of mercury
 - Oral Succimer (DMSA)

Mercury: Inorganic Mercury

- **Mercury salts**
 - Mercury Sulfide (HgS) Cinnabar

- **Sources of Exposure**
 - **Historic**
 - Cosmetics and skin treatments
 - Mercuric chloride in teething powder (calomel)
 - **Current**
 - Pesticides and herbicides
 - Home folk remedies

- **Route of Exposure**
 - Ingestion

- **Toxicity Manifestations (Ingestion)**
 - Corrosive to GI mucosa
 - Pink disease (calomel)
 - Renal failure
 - Nephrotic syndrome
Mercury: Inorganic Mercury

- **Diagnosis**
 - Exposure history
 - Clinical syndrome
 - 24-urine for mercury is gold standard (<50 mcg)
 - Blood mercury level has limited value (<10 mcg/L)

- **Management**
 - Exposure mitigation
 - Supportive care
 - Chelation (prompt)
 - Symptomatic
 - Elevated body burden of mercury
 - Dimercaprol IM
 - Oral Succimer (DMSA)
 - Hemodialysis
 - Renal failure

Mercury: Organic Mercury

- **Organic mercurial compounds**
 - Methyl mercury
 - Ethyl mercury (thimerosal)
 - Bioamplification
 - Microorganisms methylate inorganic and elemental mercury resulting in methylmercury
 - Well-absorbed by GI tract
 - Crosses blood-brain barrier and placenta

- **Clinical Toxicity**
 - Paresthesia (mouth area)
 - Visual fields constriction
 - Ataxia and tremor

- **Sources of Exposure**
 - Historic
 - Industrial
 - Minamata Japan 1956
 - 2263 adult poisonings
 - 63 congenital poisonings
 - Methylmercury in seafood
 - Medicinal
 - Iraq 1972
 - 6000 poisonings
 - 459 death
 - Methylmercury fungicide grain
 - Current
 - Dietary consumption of predatory fish (Tuna and sword fish)
Minamata Bay

Minamata City

- Town of 200,000
- Fishery jobs
- Fish and Shellfish main diet

Minamata Bay

Minamata Bay
Chisso Factory
1932 - 1968

“Economic” success post WWII

MINAMATA DISEASE

- 1956 Discovery of Minamata Disease
- Cat suicides
- Thousands of people affected and hundreds died
- Permanent brain damage and congenital defects “Minamata Disease”
- Methyl Mercury poisoning
- Seafood
Minamata Disease

- Acquired Minamata Disease, 1956
 - Chronic methyl mercury poisoning
 - Constricted visual fields
 - Hearing loss
 - Ataxia
 - Dysarthria
 - Tremors
 - Peripheral neuropathy

- Congenital Minamata Disease, 1962
 - Methyl mercury crosses the placenta (1ppm in cord blood)
 - Cerebral Palsy - like manifestations
 - Limb deformation

Cover up Operation

- 1959 Research Group at Kumamoto University concluded that Mercury most probable cause
- 1959 Company physician banned from revealing animal experiment results linking the plant effluent to disease
- 1965 Discovery of Minamata Disease in Niigata, Agano River Basin
- 1966 Halt of Effluent discharge into the Bay
- 1968 Official government recognition of cause-effect between Methyl mercury and Minamata
“Death Flows from the Pipe”

- Chisso chemical plant dumping Mercury waste into the bay
- Inorganic Mercury in the effluent
- Mercury was used as catalyst in PVC and Acetaldehyde production

W. Eugene Smith
Industrial Waste
from the Chisso Chemical Company 1972

Mercury Concentrations in Tissue Samples (ppm)*

<table>
<thead>
<tr>
<th>Human</th>
<th>Fish & Shellfish</th>
<th>Cats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>less than 3.0</td>
<td>Control</td>
</tr>
<tr>
<td>kidney</td>
<td>3.1-144.0</td>
<td>kidney</td>
</tr>
<tr>
<td>liver</td>
<td>0.3-70.5</td>
<td>liver</td>
</tr>
<tr>
<td>brain</td>
<td>0.1-24.8</td>
<td>brain</td>
</tr>
<tr>
<td>hair</td>
<td>96-705</td>
<td>hair</td>
</tr>
<tr>
<td>Oyster</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Gray mullet</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Short-necked clam</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>China fish</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>Crab</td>
<td>35.7</td>
<td></td>
</tr>
</tbody>
</table>

Immediate Actions

“Quarantine” the Bay Fishing Ban

Clean-up Operation
Removal, Reclamation and Dredging
Clean-up Operation
Removal, Reclamation and Dredging

Minamata Bay Declared Safe
July 29, 1997

1997 Removal of a net preventing mercury-polluted fish in Minamata Bay (Kumamoto Pref.) from entering the sea.
Trends in Total Mercury Levels of Fish and Shellfish

Fight goes on …

- Victims appealed their cases to District Court, the High Court, and the Supreme Court, and the latter ruled in their favor.
- ~ 10,000 people awarded payment
Health Facilities for Minamata Victims

Memories
Mercury: Organic Mercury

Diagnosis
- Exposure history
- Clinical syndrome
- Whole Blood mercury level is the goal standard (<10 mcg/L) since more than 90% of methylmercury is bound to Hb in RBC
- Urinary mercury is unreliable since methylmercury is eliminated primarily in the bile

Management
- Exposure mitigation
- Supportive care
- Chelation
 - Symptomatic
 - Elevated body burden of mercury
 - Dimercaprol
 - Oral Succimer (DMSA)
Arsenic: Characteristics

Properties
- Arsenic compounds occur in four chemical forms:
 - Inorganic (toxic)
 - Arsine (toxic)
 - Organic (little toxicity)
 - Elemental (non toxic)
- Toxic arsenic compounds occur in two oxidation states:
 - Arsenite is ten times more toxic than arsenate
- No physiologic role

Sources of exposure
- Human use:
 - Criminal Poisoning (suspected in Mozart and Napoleon deaths)
- Industry:
 - Paints
 - Pesticide, herbicide, fungicide
 - Wood preservatives
 - Semiconductors
- Medicinal:
 - Arsenic trioxide for leukemia
- Geological contamination:
 - Drinking water
- Seafood:
 - Organic arsenic (little toxicity)

Arsenic: Inorganic Arsenic

Acute Toxicity
- GI: nausea, vomiting, bloody rice watery diarrhea
- Hematologic: bone marrow suppression
- CVS: QT prolongation and torsade de pointes
- PNS: peripheral neuropathy
- CNS: encephalopathy

Chronic Toxicity
- Dermatologic: hyperpigmentation and keratosis on palms and soles
- Nails: Mees lines
- PNS: peripheral neuropathy
- CVA: peripheral vascular disease and HTN
Bangladesh

Arsenic

- Bangladesh. 1970 - 2005
- 3695 with arsenic poisoning
- Tube Well’s water
- Groundwater naturally contaminated with arsenic

Rahman et al. Clinical Toxicology, 39 (7), 683-700 (2001)
Bangladesh

Chronic Arsenic Toxicity

<table>
<thead>
<tr>
<th>Physical Parameters</th>
<th>Bangladesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area in sq km</td>
<td>148,393</td>
</tr>
<tr>
<td>Population in millions</td>
<td>120</td>
</tr>
<tr>
<td>Total number of districts</td>
<td>34</td>
</tr>
<tr>
<td>Number of arsenic-affected districts</td>
<td>252</td>
</tr>
<tr>
<td>Number of arsenic-affected districts in millions</td>
<td>178</td>
</tr>
<tr>
<td>Area of arsenic-affected districts in sq km</td>
<td>118,849</td>
</tr>
<tr>
<td>Population of arsenic-affected districts in millions</td>
<td>178</td>
</tr>
<tr>
<td>Total number of hand pump wells analyzed</td>
<td>34,000</td>
</tr>
<tr>
<td>% of samples with arsenic > 10 μg/L</td>
<td>36%</td>
</tr>
<tr>
<td>% of samples with arsenic > 50 μg/L</td>
<td>18%</td>
</tr>
<tr>
<td>Number of arsenic-affected blocks/police stations with arsenic > 50 µg/L</td>
<td>178</td>
</tr>
<tr>
<td>Number of arsenic-affected villages (est.) with groundwater arsenic > 50 µg/L</td>
<td>2000</td>
</tr>
<tr>
<td>Population drinking water with arsenic > 50 µg/L</td>
<td>255</td>
</tr>
<tr>
<td>Districts surveyed for arsenic patients</td>
<td>34</td>
</tr>
<tr>
<td>Number of districts in which arsenical skin lesions were identified</td>
<td>32</td>
</tr>
<tr>
<td>Villages surveyed for arsenic patients</td>
<td>244</td>
</tr>
<tr>
<td>Number of villages in which arsenical lesions were identified</td>
<td>217</td>
</tr>
<tr>
<td>Persons from affected villages screened for arsenic patients (preliminary survey)</td>
<td>18,000</td>
</tr>
<tr>
<td>Number of patients, including children, identified as having clinical manifestations</td>
<td>3,365 (20.6%)</td>
</tr>
<tr>
<td>% of children with arsenical skin lesions of total patients</td>
<td>6.11</td>
</tr>
</tbody>
</table>

Rahman et al. Clinical Toxicology, 39 (7), 683-700 (2001)
Clinical Stages of Arsenic Chronic Toxicity

- Asymptomatic
- Dermatological manifestations
- Internal stage
 - Anemia and HTN
 - Lungs, Liver and Spleen
- Malignant stage
- Peripheral neuropathy

Rahman et al. Clinical Toxicology, 39 (7), 683-700 (2001)

Dermatologic Signs

- Keratosis
- Melanosis
- Melanokeratosis
- Leucomelanosis
- Mucous membrane pigmentation
Arsenic Concentrations in Patients

Bangladesh

<table>
<thead>
<tr>
<th>Parameters</th>
<th>As in Hair (µg/kg)</th>
<th>As in Nail (µg/kg)</th>
<th>As in Urine (µg/L)</th>
<th>As in Skin Scale (µg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of observations</td>
<td>4386</td>
<td>4321</td>
<td>1084</td>
<td>705</td>
</tr>
<tr>
<td>Mean</td>
<td>3390</td>
<td>8570</td>
<td>280</td>
<td>57.30</td>
</tr>
<tr>
<td>Median</td>
<td>2340</td>
<td>6400</td>
<td>1157.8</td>
<td>4800</td>
</tr>
<tr>
<td>Minimum</td>
<td>280</td>
<td>260</td>
<td>24</td>
<td>600</td>
</tr>
<tr>
<td>Maximum</td>
<td>28,060</td>
<td>79,490</td>
<td>3086</td>
<td>53,390</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3330</td>
<td>7630</td>
<td>410</td>
<td>9790</td>
</tr>
<tr>
<td>% of samples having arsenic above normal</td>
<td>83.15</td>
<td>93.77</td>
<td>95.11</td>
<td>—</td>
</tr>
</tbody>
</table>

* Normal levels of arsenic in hair range from 60–250 µg/kg; 1500 µg/kg indicates toxicity (40).
* Normal levels of arsenic in nails range from 4300–14,000 µg/kg (41).
* Normal excretion of arsenic in urine range from 5–40 µg/1.5 L (per day) (42).
* Normal value for skin scale arsenic not defined.

Rahman et al. Clinical Toxicology, 39 (7), 683-700 (2001)
Well’s Water

Wells Water and Arsenic Level

Table 2. Range of concentration of arsenic in water from 4897 tube wells in Arokaza, Bangladesh, 2000

<table>
<thead>
<tr>
<th>Arsenic concentration (μg/l)</th>
<th>% of wells</th>
</tr>
</thead>
<tbody>
<tr>
<td><5-10</td>
<td>28</td>
</tr>
<tr>
<td>11-50</td>
<td>20</td>
</tr>
<tr>
<td>51-100</td>
<td>17</td>
</tr>
<tr>
<td>>100</td>
<td>35</td>
</tr>
</tbody>
</table>

Well’s Depth and Arsenic Level

Arsenic

- Naturally occurring heavy metalloid
- Often associated with other metals in nature like copper, lead and gold
- Released into environment from volcanoes and erosions from mineral deposits
- Certain bacteria use arsenic salts for energy generation in the absence of oxygen and thus mobilize it from solid to aqueous phase
Contamination of Water Aquifer

Oremland: Science, Volume 300(5621). May 9, 2003. 939-944

Promotion of well-switching

Deep Well in West Bengal, LAG©
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure history</td>
<td>Exposure mitigation</td>
</tr>
<tr>
<td>Clinical syndrome</td>
<td>Supportive care</td>
</tr>
<tr>
<td>24-urine arsenic is the gold standard (<50 mcg/L)</td>
<td>Chelation</td>
</tr>
<tr>
<td>Speciation of urinary arsenic should be done to differentiate inorganic from organic forms</td>
<td>Symptomatic</td>
</tr>
<tr>
<td>Whole blood arsenic level rapidly declines in 24-48 hours (<1 mcg/dl)</td>
<td>Elevated body burden of mercury</td>
</tr>
<tr>
<td>EKG</td>
<td>Dimercaprol</td>
</tr>
<tr>
<td>CBC, CMP</td>
<td>Oral Succimer (DMSA)</td>
</tr>
<tr>
<td>Nerve conduction studies</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td></td>
<td>Renal failure</td>
</tr>
</tbody>
</table>